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Many biotechnological aided reproductive methods are now utilized to manage 
farm animal reproductive processes. Nowadays, smart artificial reproductive technology 
(ART) is being created that takes into account method efficiency, animal welfare, economic 
efficiency and environmental health. The nanotechnology based revolution has swept across 
all fields of science, including farm animal reproduction, allowing for considerable advances 
in this field. Nanotechnology has the potential to enhance and solve numerous technical 
challenges confronting many forms of ART. To deliver high-quality sperm doses, 
technologies for sperm preservation and purification have been developed using a variety of 
nanomaterials. Cryopreservation causes sperm damage through oxidative stress (OS) and 
disrupting the plasma membrane integrity. Free radicals and OS are regularly formed during 
the process of cryopreservation and nanoparticles (NPs) are routinely used to guard against 
them. We cover current nanoparticle-based approaches for preventing cryoinjuries during 
sperm cryopreservation in animals in this brief review. 

 
1. Introduction 

Artificial insemination (AI) with cryopreserved 
sperm leads to genetic improvement and promotes the 
conservation of endangered breeds, preserving biodiversity. 
Sperm freezing causes ultrastructural and functional 
alterations in the spermatozoa. Damage to chromatin 
integrity, increased sperm membrane permeability, free 
radical hyperoxidation and reactive oxygen species (ROS) 
generation are all detrimental to fertilization leading to early 
embryonic development (Ntemka et al. 2018). Membrane 
phospholipids concentrate due to van-der-Waals forces 
following sperm freezing, and the liquid crystal to gel phase 
transition occurs. During the thawing process, irregular voids 
form in the cell membrane, causing membrane damage as 
well as irregular water and ion leakage in and out (Patist and 
Zoerb, 2005). During semen cryopreservation, cold shock and 
ambient oxygen increases ROS generation, resulting in an 
imbalance between free radicals and antioxidant defense in 
the semen (Petruska et al. 2014). Increased ROS production 
can impair sperm function by inactivating glycolytic enzymes 
via acrosomal damage, resulting in lipid peroxidation (LPO), 
affecting sperm fertility (Sikka, 1996). The LPO mechanism  

 is damaging to sperm viability because it is initiated by H2O2. 
Due to higher quantity of PUFA in the plasma membrane and 
a lack of antioxidant enzyme defence system, mammalian 
spermatozoa are prone to LPO-induced damage resulting in 
loss of sperm activity (Ziaullah et al. 2012). Increased ROS 
generation under OS results in increased permeability of 
sperm plasma membrane, diminished sperm cell cytoplasm, 
substantial loss in viability, sperm membrane integrity, 
fertilizing capacity and increased sperm DNA damage (Bucak 
et al. 2010). The majority of research in the previous few 
decades has focused on methods/approaches to improve 
sperm freezing efficiency. The methods utilized were 
primarily aimed at shielding spermatozoa from the damaging 
effects of freezing, such as the use of different extenders, 
cryoprotectant chemicals, antioxidants and nutritional 
components. Other investigations interrogated how injured 
spermatozoa were healed following freezing and thawing. . 
To guarantee that free radicals are scavenged and post-thaw 
sperm activity is enhanced, several tactics are employed, 
including the inclusion of antioxidants and cryoprotective 
chemicals (Lasso et al. 1994). Antioxidants, on the other 
hand, have several drawbacks, such as limited resistance to  
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severe conditions and poor solubility and stability in aqueous 
environments (Martinelli et al. 2020). Antioxidants can be 
protected by encapsulation nanotechnology from 
deterioration caused by direct contact with external elements 
such as light, oxygen, chemicals, heat, and pressure. This 
method can also improve antioxidant solubility and stability 
in biological fluids, resulting in increased bioavailability 
(Khalil et al. 2019). Nanomaterials might be employed in 
farm animal reproduction in a number of ways, including 
transgenesis and targeted chemical delivery to sperm cells, 
antioxidants, as well as during sperm cryopreservation. The 
antioxidant properties of certain NPs are among the most 
propitious attributes for their usage in safeguarding sperm 
cell activity during cryopreservation (Hashem et al. 2020). 
The current review summarizes the different nanoparticles 
that are used as antioxidants during sperm cryopreservation 
for minimizing the deleterious effects of freezing. 
 
How NPs confer spermatozoa better protection against 
cryoinjury 

In ruminant species, the sperm membrane consists 
of higher concentration of phospholipids that are unsaturated 
and a lower concentration of cholesterol. This composition, 
notably the decreased cholesterol content, reduces sperm 
resilience to freezing–thawing (Darin- Bennet et al. 1977). 
Phospholipids redistribute across the membrane during 
freezing, and some of them transit from liquid to gel state 
faster than others owing to structural variations, resulting in 
lipid phase separation (Grotter et al. 2019). As a result, the 
lipid–protein interactions essential for appropriate membrane 
activity are disrupted, and certain sperm surface and 
membrane proteins are lost or translocated, resulting in the 
loss of function (Lemma, 2011). 

Cryopreservation also alters the amount of proteins 
that serve as ROS scavengers. Following cryopreservation, 
antioxidant enzymes such GPx, GR and SOD were reported 
to be redistributed on the surface of ram sperm (Marti et al. 
2008). Sperm antioxidant defence is rather limited and is 
mostly dependent on the antioxidant capacity of SP (Martin-
Hidalgo et al. 2019). Disruptions in the sperm antioxidant 
system during cryopreservation, as well as the activation of 
L-Amino acid oxidase in dead or faulty cryopreserved sperm, 
all contribute significantly to increased ROS generation.  

Antioxidant supplementation in the freezing 
medium minimizes the deleterious effects caused by 
excessive ROS generation during cryopreservation, 
improving sperm cryosurvival. Antioxidants (both enzymatic 
and non-enzymatic) can be incorporated in the freezing 
medium, with varied consequences (Fernandez-Santos et al. 
2007). Recent research studied the inclusion of several NPs in 
the freezing medium to address the primary limitations that 
traditional antioxidants may have, such as their limited  

durability under hard settings (Khalil et al. 2019). Advances 
in nanotechnology have aided in the development of new 
nano-compounds with antioxidant capabilities, such as Se, 
ZnO and apoferritin containing Ag-Au NPs. 

Novel nano-compounds with antioxidant 
capabilities, such as selenium, zinc oxide, and apoferritin 
containing gold-silver nanoparticles, have been developed 
thanks to breakthroughs in nanotechnology. The addition of 
selenium nanoparticles to the semen extender improved the 
vitality, motility, and chromatin integrity of cryopreserved 
bull sperm, resulting in improved in vivo fertility (Khalil et 
al. 2019). When selenium particles were added to the freezing 
medium, similar results were reported in cryopreserved ram 
sperm (Hozyen et al. 2019). These findings explain so as why 
selenium nanoparticles reduce oxidative stress, lipid 
peroxidation, and apoptosis by increasing GPx activity. The 
post-thaw quality of dromedary camel sperm was also 
enhanced by supplementing the freezing media with selenium 
or zinc oxide nanoparticles (Shahin et al. 2020). Both 
nanoparticles have the capacity to boost antioxidant enzyme 
activity (GPx and SOD), as well as GSH and scavenge ROS. 
Cryopreserved sperm's viability, membrane integrity, and 
motility were all increased, while apoptosis was reduced. A 
silver–gold nanohybrid in an apoferritin cage was another 
nanoparticle recently created to imitate SOD, CAT, and GPx 
activities (Dashtestani et al. 2019). Because of the lowering 
of ROS levels and apoptosis during cryopreservation, 
enriching semen extender with apoferritin containing gold–
silver nanoparticles resulted in increased sperm viability and 
motility after thawing. These findings confirm nanoparticles' 
ability to protect sperm from oxidative damage during 
freezing and thawing, but more research in various ruminant 
species is needed to rule out nanotoxicity in sperm cells. 

The spermatozoa cytoplasmic membrane may be 
harmed by the cooling/freezing process because 
phospholipids are re-localized into a new pattern. In this 
regard, phospholipid-based NPs have been discovered to 
increase spermatozoa membrane integrity by compensating 
for the loss of free fatty acids and phospholipids during 
cryopreservation. When compared to lecithin-based and egg 
yolk-based extenders, Nadri et al. (2019) found that using a 
nano-lecithin-based extender (2% lecithin) for the dilution of 
goat semen improves sperm cryosurvival (in terms of lower 
apoptosis and higher motility, viability, and sperm membrane 
functionality). 
 

Different types of Nanoparticles and their use in Sperm 
preservation 

NPs, have a diameter of less than 100 nm, can be 
employed for a number of bioapplications, including 
reproductive biology, due to their unique physical and 
chemical characteristics (Shahin et al. 2020). Several atoms  
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and molecules have structural properties that differ from bulk 
materials in a variety of ways. The surface properties of NPs, 
such as their size, play an important role in their activity. Two 
significant parameters to consider are hydrophobicity and 
charge density. Manipulation of functional chemicals into 
nanoforms can increase absorption and bioavailability (Zhang 
et al. 2006). 
Recent breakthroughs in nanoparticle technology have led in 
the creation of a number of NP compositions with powerful 
antioxidant, antibacterial and anti-inflammatory properties. 
 

1. Vitamin Nanoemulsions in Sperm cryopreservation 
Nanoemulsions (NEs) are vesicular systems that have an 

oily core and are stabilised by surfactants. They display 
remarkable adaptability by including oil from various sources 
and choosing the NE surface based on the characteristics of 
the administration method (Santander- Ortega et al. 2012). A 
new line of study focuses on nanotechnology as a 
breakthrough tool in spermatology, utilising NE to 
accommodate vitamin E within, protecting it from oxidation 
and stimulating its release into the medium. Nanosystems are 
nanoscale structures that can connect with or enclose active 
molecules. They've been used successfully to treat a number 
of disorders, with several formulations on the market and in 
clinical trials (Gil Guzman et al. 2001). 

Safa et al. (2016) investigated the effects of Vitamin E 
(5 and 10 g/mL) and Nano-Se (1 and 2%), and their 
combination in Beltsville extender for cryopreservation of 
rooster sperm. They observed that, as compared to the control 
group, supplementing Vitamin E @ 5 g/mL and 1% Nano-Se 
improved total sperm motility, progressive sperm motility, 
sperm vitality and sperm membrane integrity after the freeze–
thaw technique. Furthermore, extenders treated with vitamin 
E @5 g/mL only or in combination with Vitamin E @ 5 
g/mLand 1% Nano-Se had lower MDA contents than control 
extenders.  

Vitamin E NE conferred protection against sperm 
oxidative damage. The beneficial effects of these NE appear 
to be mediated by motility parameters improvement, as 
progressivity and sperm velocity, maintaining and protecting 
mitochondrial activity. In addition, vitamin E NE protect the 
integrity of the acrosome as well as prevent cell death 
(Sanchez-Rubio et al., 2020). 

 
2. Herbal Extract NPs in sperm preservation 

In a number of recent investigations, several herbal 
extracts have been explored as lipid peroxidation suppressor 
and natural antioxidants in farm animal sperm preservation.  

When cryopreserved bovine and rabbit sperm were 
treated with curcumin extract, the post-thaw quality of the 
spermatozoa improved. Curcumin NPs added to the extender 
can increase post-thawed rabbit sperm motility, membrane 

integrity, vitality, and sperm ultrastructure. These benefits 
might be attributed to their ability to reduce lipid and protein 
oxidation, thereby reducing apoptosis (Tvrda et al. 2018). 
When 1.5 g/mL Cucurmin NPs were employed, the largest 
increase in post-thawed rabbit semen quality was found 
(Tvrda et al. 2016). Cucurmin (50 mol/L) has significant 
ROS-scavenging properties, hinting that it may protect 
cryopreserved bovine spermatozoa from OS and hence boost 
male gamete post-thaw functional activity (Tvrda et al. 2018). 
Alnusincana bark extract (Abadjieva et al. 2020) and 
Albiziaharveyi leaf extract (Sobeh et al. 2017) displayed 
protective antioxidative effects when supplemented in 
cryopreserved ram and bovine semen. Echinacea and ginger 
extracts improved spermatozoa quality and fertility potential 
when added in the freezing medium for cryopreserved ram 
sperm (Merati and Farshad, 2020). Thyme, mint and 
Curcumin nanoformulations improved post-thawed buck 
sperm characteristics and redox status while decreasing sperm 
death and chromatin decondensation (Pagl et al. 2006). 
 

3. Metal Nanoparticles in sperm preservation 
Increased ROS levels are known to cause apoptosis, 

reduced cellular metabolism and acrosome response 
impairment (Nizanski et al. 2016). Durfey et al. (2017) used 
magnetic NPs in conjugated form for molecular selection of 
spermatozoa, and the nanoselected spermatozoa showed 
improved motion characteristics, such as a higher proportion 
of advancing spermatozoa and straightness in boars.  

Tsakmakidis et al. (2020) investigated the effect of 
Fe3O4 NPs (Fe-0.192 mg/mL semen) on boar semen 
incubated for 0.5 h at the standard storage temperature (17º 
C) and reported that the use of Fe3O4 NPs during semen 
processing and preservation provided slight anti-microbial 
effect with no deleterious effect on sperm characteristics. 
Basioura et al. (2020) studied the kinetic sperm motion 
characteristics of Fe3O4 NPs (0.192 mg/mL semen) and 
Ag/Fe NPs consisting of Ag and a 5% of zero-valent Fe 
(0.128 mg/mL semen) in boar semen incubated at 17ºC for 30 
minutes following magnetic removal of the said NPs. In 
conclusion, they reported that Ag/Fe NPs were toxic to boar 
spermatozoa, however the tested Fe3O4 NP concentration had 
no influence on CASA motility characteristics in boar sperm.  

ZnO NPs minimizes ROS generation and boosts 
sperm viability (Heidari et al. 2018). When spermatozoa are 
damaged by ROS, they lose PUFAs from the plasma 
membrane, limiting their survival and fertilizing potential 
(Bucak et al. 2010). Zn can remove free radicals from a 
number of sources, including ionising radiation and reduce 
lipid peroxidation, giving it the title "high-protection 
antioxidant" (Patist and Zoerb, 2005). Another study revealed 
that ZnO NPs may protect the cell membrane from oxidative 
damage by increasing the number of antioxidant enzymes,  
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decreasing the quantity of MDA, thereby enhancing 
antioxidant activity by decreasing the amount of free radicals. 
The use of ZnO NPs (50 g/mL) and Se NPs (1 g/mL) in the 
SHOTOR extender enhanced sperm ultrastructure and 
morphology of camel epididymal spermatozoa during 
cryopreservation by reducing apoptosis and MDA levels 
(Shahin et al. 2020). 
The addition of the Se-NP (1.0 µg/mL) in the semen expander 
improved the quality of post-thaw sperm in Holstein bulls by 
lowering apoptosis, LPO and sperm damage (Khalil et al. 
2019). When compared to sodium selenite, the 

use of Se at extremely low quantities in the form of NPs 
produces better results in terms of sperm quality. 
Furthermore, Hozyen et al. (2019) and Nateq et al. (2020) 
used SeNPs (1 µg/mL) in rams and discovered that they 
increased motility, viability index and membrane integrity 
while decreasing acrosome defects, DNA fragmentation and 
MDA levels. 

Falchi et al. (2018) reported that supplementing 
ram spermatozoa with CeO2 NPs enhanced motility metrics 
even after 48 h to 96 h of incubation.  

 

Summary of NP usage in animal species along with its effect on sperm quality 

Animal 
Spp. 

Nanoparticle Dosage Effect on sperm quality parameters References 

Rabbit ZnO 6–391 mg/mL 1.Significant increase on MOT, viability and cell 
integrity in vitro at lowest concentration. 
2. Decreased spermatozoa parameters generated 
by higher concentrations of ZnO NPs. 

Halo Jr et al. (2021) 

Rabbit Curcumin 1.5 µg/mL 1. Improved the post-thawed quality of rabbit 
sperm via redox signaling and reduce the 
apoptosis process. 

Abdelnour et al. 
(2020) 

Ram Se 1 µg/ml  1.Increased the percentage of viability, total and 
progressive motility, plasma membrane integrity. 
2. Decreased acrosome membrane damaged and 
abnormal sperms. 
3. Decreased LPO levels. 

Nateq et al. (2020) 

Rabbit Curcumin 1.5 µg/ 1.Positive influence on post-thawing sperm 
progressive motility, viability and membrane 
integrity.  
2. Reduced percentages of dead sperm, 
abnormalities, early apoptotic, apoptotic and 
necrotic sperm cells. 
3. Improved TAC and GPx.  
4. Decreased MDA and protein oxidation (POC). 

Abdelnour et al. 
(2020) 

Red deer Vit E NE 12 mM  1.Improved sperm kinematic variable and 
preserved sperm viability in samples subjected to 
OS.  
2. Preserved the acrosomal integrity, maintained 
and protected mitochondrial activity, prevented 
sperm lipoperoxidation and reduced ROS 
production in samples subjected to OS. 

Sanchez Rubio et 
al. (2020) 

Camel Se-NP & Zn-NP SeNPs @ 1 

μg/mL  
ZnONPs @50 

μg/mL 

1.Maintained the progressive motility, livability 
and membrane integrity and decreased 
abnormalities and cytoplasmic droplet 
percentages of epididymal spermatozoa stored at 
4 °C up to 144 h. 

Shahin et al. (2020) 

Boar Fe3O4 Fe3O4 (Fe; 
0.192 mg/mL 
semen) 

1.Slight anti-microbiological effect with no 
adverse effects on sperm characteristics. 

Tsakmakidis et al. 
(2020) 

Boar Fe3O4 Fe3O4 (Fe; 
0.192 mg/mL 
semen) 

1.No effect on sperm CASA motility parameters Basioura et al. 
(2020) 
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Boar Ag/Fe NPs of 
diameter 30 nm, 
consisted of Ag 
and a 5% of zero-
valent Fe (0.128 
mg/mL semen) 

0.128 mg/mL 
semen 

1. Ag/Fe NPs demonstrated a harmful effect on 
boar spermatozoa. 

Basioura et al. 
(2020) 

Rat Se 1 µg/ml  1. Positive effect on post-thawing sperm 
progressive motility, livability and membrane 
integrity. 
2. Increased percentages of viable sperm. 
3. Decreased percentages of early apoptotic, 
apoptotic and necrotic sperm cells. 
 4. Increased TAC and decreased MDA 
concentration in the SP. 

Khalil et al. (2019) 

Bull Se 1 µg/ml  1.Increased post-thaw sperm progressive 
motility, livability and membrane integrity. 
2. Decreased TAC and MDA concentration. 

Khalil et al. (2019) 

Ram Se NP 0.5 μg/ml in 
extender 

1.During freezing process potentially protected 
spermatozoa from lipid peroxidation and 
maintained motilityand sperm membrane 
integrity. 

Hozyen et al. 
(2019) 

Ram CeO2 220 μg/mL 1.Beneficial effects on morphologic and 
kinematic parameters of ram semen such as 
motility and plasma membrane integrity after 
96 h of exposure. 

Falchi et al. (2018) 

Rooster Vit E and Nano 
Se 

5 μg/mL VitE 
1% of Nano-Se 

1.Improved  total sperm motility, progressive 
sperm motility, sperm viability and integrity of 
the sperm membrane after the freeze–
thawing process. 

Safa et al. (2016) 

Harmful effects of NPs on sperm quality parameters 
 

Toxicological screening is a frequent method used 
to confirm the possible clinical usage of novel medications 
and substances. The toxicity of a drug is determined by a 
variety of parameters including gender, age and species and is 
mediated by the organism's capacity to absorb and metabolize 
the chemical. The varying sensitivity of animal species to 
various harmful chemicals has been recognized for many 
years, and the scientific community fully accepts this reality. 
The analysis of a new drug's potential hazardous qualities in 
different animal models and the testing of different dosages is 
a standard scientific strategy that frequently yields diverse 
results and assures the safety and potential wide usage of that 
agent.  

Bahamonde et al. (2018) recently demonstrated that 
there are significant species-specific changes in the 
biodistribution, excretion and toxicity potential of Au NPs. 
Furthermore, the impacts of NPs on cells are constantly being 
studied, and according to the literature, these effects on 
spermatozoa might vary depending on the kind of NPs, as 
well as their in vitro or in vivo delivery (Falchi et al. 2018). 
Although time and dose are important factors in NP toxicity, 

many other factors such as shape, size, stability, surface, 
magnetic activity, physicochemical properties and thermal 
and electrical conductivity of NPs, are thought to affect the 
dynamic of toxicity potential (Budama- Kilinc et al. 2018). 
Even after 48 hours of storage, no harmful impact of Fe3O4 
NPs on swine spermatozoa was reported by Tsakmakidis et 
al. (2020). Falchi et al. (2016) reiterated that attention should 
be paid to the unique effects of NPs on male gametes, where 
cytotoxicity occurs in a time/dose dependent way, with 
species susceptibility acting as a possible diversification 
factor. Furthermore, Ag NPs has been documented to have a 
time and dose dependent negative effect on rat epididymal 
spermatozoa (Gromadzka-Ostrowska et al. 2012). Ag NP 
supplementation enhanced toxicity in rat and mouse sperm 
but not in human sperm (Yoisungnen et al. 2015). Through an 
equilibrium of dissolved Fe ions and the formation of free 
radicals via Fenton-like reactions, magnetite NPs can create 
ROS thus damaging the cell (Arakha et al. 2015). Low 
concentrations of CeO2 NPs had a substantial influence on in 
vitro fertilization in mice and were genotoxic to both male 
and female gametes (Preaubert et al. 2015). In the mouse, 
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CeO2 NPs caused DNA damage in spermatozoa and oocytes, 
affecting in vitro fertilizing potential (Preaubert et al. 2015), 
whereas in ovine species, supplementing maturation media 
with CeO2 NPs (44g/mL) enhanced fertilization and 
blastocyst rate, and no adverse effects in chromatin 
configuration of oocytes exposed to NPs were observed (Ariu 
et al. 2017). In contrary, chromatin damage in mice (Asare et 
al. 2012) and bull spermatozoa (Zakhidov et al. 2013) 
exposed to Ag NPs has been documented. 
 

2. Conclusion 
NPs and natural or synthetic nanovesicles are 

increasingly being employed to improve sperm 
cryopreservation. NPs, when compared to equivalent metals 
or plant extracts, primarily perform as antioxidants with 
significant advantages. Metal or natural herb NPs work 
largely as antioxidants, protecting sperm against cryoinjury 
caused by free radicals and by-products of LPO cascade. 
More study is required to understand the ultrastructural 
dynamics and how NP supplementation impacts fertilization 
and the early phases of embryonic development. 
Abbreviations 

Ag- Gold; AI- Artificial Insemination; Al- 
Aluminium; Al2O3- Aluminium oxide; ALH- amplitude of 
lateral head displacement; ART- Artificial Reproductive 
Technology; Au- Silver; CASA- Computer assisted semen 
analysis; Cd- Cadmium; CeO2- Cerium oxide; Co- Cobalt; 
Cu- Copper; DNA- Deoxyribonucleic acid; Fe- Iron; Fe2O3- 
Iron(III) oxide ; Fe3O4-  Iron(II,III) oxide; GPx- Glutathione 
peroxidase; GR- Glutathione reductase; GSH- Reduced 
glutathione; H2O2- Hydrogen peroxide; LIN- linearity; LPO- 
Lipid peroxidation; MDA- Malondialdehyde; NE(s)- 
Nanoemulsion(s); nm- nanometer; NP(s)- Nanoparticle(s); 
Nrf2- Nuclear factor erythroid 2–related factor 2; OS- 
Oxidative Stress; Pb- Lead; PUFA- Polyunsaturated fatty 
acids ; ROS- Reactive Oxygen Species; Se- Selenium; Sio2- 
Silica; SOD- Superoxide dismutase; SP- Seminal plasma; 
STR- straightness (VSL/VAP); TiO2- Titanium dioxide; 
VAP- average path velocity; VCL- curvilinear velocity; VSL- 
straight-line (rectilinear) velocity; Zn- Zinc; ZnO- Zinc oxide 
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